Docker批量容器编排的实现介绍
2020-10-24 12:36:19
来源:
互联网
章主要介绍了Docker批量容器编排的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。
简介
Dockerfile build run 是手动操作单个容器,假如使用微服务架构,需要启动 100 + 个容器,他们之间的依赖关系如何维护?
Docker Compose 用来轻松高效地管理容器,定义运行多个容器。
三个步骤:
- Dockerfile
- Services & docker-compose.yml
- docker-compose up
初体验
1.Dockerfile
FROM python:3.7-alpine
WORKDIR /code
ENV FLASK_APP app.py
ENV FLASK_RUN_HOST 0.0.0.0
RUN apk add --no-cache gcc musl-dev linux-headers
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["flask", "run"]
2.Service
import time
import redis
from flask import Flask
app = Flask(__name__)
cache = redis.Redis(host='redis', port=6379)
def get_hit_count():
retries = 5
while True:
try:
return cache.incr('hits')
except redis.exceptions.ConnectionError as exc:
if retries == 0:
raise exc
retries -= 1
time.sleep(0.5)
@app.route('/')
def hello():
count = get_hit_count()
return 'Hello World! I have been seen {} times.\n'.format(count)
docker-compose.yml
version: '3'
services:
web:
build: .
ports:
- "5000:5000"
volumes:
- .:/code
- logvolume01:/var/log
links:
- redis
redis:
image: redis
volumes:
logvolume01: {}
docker-compose up
Starting compose-demo_web_1 ... done
Starting compose-demo_redis_1 ... done
Attaching to compose-demo_redis_1, compose-demo_web_1
redis_1 | 1:C 12 Sep 2020 07:34:09.654 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
redis_1 | 1:C 12 Sep 2020 07:34:09.655 # Redis version=6.0.7, bits=64, commit=00000000, modified=0, pid=1, just started
redis_1 | 1:C 12 Sep 2020 07:34:09.655 # Warning: no config file specified, using the default config. In order to specify a config file use redis-server /path/to/redis.conf
redis_1 | 1:M 12 Sep 2020 07:34:09.657 * Running mode=standalone, port=6379.
redis_1 | 1:M 12 Sep 2020 07:34:09.657 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128.
redis_1 | 1:M 12 Sep 2020 07:34:09.657 # Server initialized
redis_1 | 1:M 12 Sep 2020 07:34:09.658 # WARNING overcommit_memory is set to 0! Background save may fail under low memory condition. To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the command 'sysctl vm.overcommit_memory=1' for this to take effect.
redis_1 | 1:M 12 Sep 2020 07:34:09.658 * Loading RDB produced by version 6.0.7
redis_1 | 1:M 12 Sep 2020 07:34:09.658 * RDB age 156 seconds
redis_1 | 1:M 12 Sep 2020 07:34:09.658 * RDB memory usage when created 0.77 Mb
redis_1 | 1:M 12 Sep 2020 07:34:09.658 * DB loaded from disk: 0.000 seconds
web_1 | * Serving Flask app "app.py"
web_1 | * Environment: production
web_1 | WARNING: This is a development server. Do not use it in a production deployment.
web_1 | Use a production WSGI server instead.
web_1 | * Debug mode: off
YML 文件规则
version: "1.0" #版本
services: #服务列表
service1:
#服务配置
container_name: #容器名称
depends_on: #依赖列表
- depend1
- depend2
images: #镜像
- image1
- image2
build:. #构建目录
network: #网络
......
service2: test2
......
volumnes: #挂载目录列表
networks: #网络列表
configs: #其他配置
到此这篇关于Docker批量容器编排的实现的文章就介绍到这了,更多相关Docker批量容器编排内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!